Детерміно́ваний хао́с — хаотична поведінка детерміністичної системи, яка проявляється через надзвичайно високу чутливість до початкових умов. Явище детермінованого хаосу неодоразово спостерігалося як в лабораторних умовах (в плазмі, електричних колах, лазерах, хімічних реакціях, рідинах, в низці механічних пристроїв) так і в природі (динаміка зростання популяцій та метеорологічні явища). Першими дослідниками хаосу були французькі математики Анрі Пуанкаре та Жак Адамар. Термін «хаос» увів в обіг американський математик Джеймс Йорк в 1975 році.
Детермінований хаос виникає тоді, коли результати еволюції, що починаються із нескінченно малого околу певної початкової точки, покривають скінченну область у фазовому просторі, тобто коли незначне відхилення у початкових умовах призводить до значного відхилення в кінцевій точці.
Найпростішою неперервною системою, в якій спостерігається детермінований хаос, є дивний атрактор Лоренца.
Біфуркаційна діаграма для відображення повернення, що демонструє наростання хаотичної поведінки із зміною параметру.
У системах, що описуються нелінійними диференційними рівняннями, обов'язкою умовою існування детермінованого хаосу є вимога того, щоб система описувалася принаймні трьома динамічними змінними. У двовимірному випадку неможливо побудувати фазовий портрет системи, в якому фазові траєкторії не перетиналися б (вимога детермінізму) й існував хаос. У системах із дискретним часом такої вимоги не існує. Наприклад, хаос виникає в одновимірній задачі про відображення повернення, яка визначається рівнянням:
Існування детермінованого хаосу накладає обмеження на можливість моделювання складних процесів, наприклад, метеорологічних. Довготермінове прогнозування погоди стає неможливим не тому, що математичні моделі, які при цьому використовуються, обмежені, а тому, що найменша похибка в зібраних даних із необхідністю призводить до зовсім неправильного результату.